3.20 \(\int \frac{x}{a+b \csc (c+d x^2)} \, dx\)

Optimal. Leaf size=63 \[ \frac{b \tanh ^{-1}\left (\frac{a+b \tan \left (\frac{1}{2} \left (c+d x^2\right )\right )}{\sqrt{a^2-b^2}}\right )}{a d \sqrt{a^2-b^2}}+\frac{x^2}{2 a} \]

[Out]

x^2/(2*a) + (b*ArcTanh[(a + b*Tan[(c + d*x^2)/2])/Sqrt[a^2 - b^2]])/(a*Sqrt[a^2 - b^2]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.118444, antiderivative size = 63, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.312, Rules used = {4205, 3783, 2660, 618, 206} \[ \frac{b \tanh ^{-1}\left (\frac{a+b \tan \left (\frac{1}{2} \left (c+d x^2\right )\right )}{\sqrt{a^2-b^2}}\right )}{a d \sqrt{a^2-b^2}}+\frac{x^2}{2 a} \]

Antiderivative was successfully verified.

[In]

Int[x/(a + b*Csc[c + d*x^2]),x]

[Out]

x^2/(2*a) + (b*ArcTanh[(a + b*Tan[(c + d*x^2)/2])/Sqrt[a^2 - b^2]])/(a*Sqrt[a^2 - b^2]*d)

Rule 4205

Int[((a_.) + Csc[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*Csc[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[
(m + 1)/n], 0] && IntegerQ[p]

Rule 3783

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(-1), x_Symbol] :> Simp[x/a, x] - Dist[1/a, Int[1/(1 + (a*Sin[c + d
*x])/b), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x}{a+b \csc \left (c+d x^2\right )} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{a+b \csc (c+d x)} \, dx,x,x^2\right )\\ &=\frac{x^2}{2 a}-\frac{\operatorname{Subst}\left (\int \frac{1}{1+\frac{a \sin (c+d x)}{b}} \, dx,x,x^2\right )}{2 a}\\ &=\frac{x^2}{2 a}-\frac{\operatorname{Subst}\left (\int \frac{1}{1+\frac{2 a x}{b}+x^2} \, dx,x,\tan \left (\frac{1}{2} \left (c+d x^2\right )\right )\right )}{a d}\\ &=\frac{x^2}{2 a}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{-4 \left (1-\frac{a^2}{b^2}\right )-x^2} \, dx,x,\frac{2 a}{b}+2 \tan \left (\frac{1}{2} \left (c+d x^2\right )\right )\right )}{a d}\\ &=\frac{x^2}{2 a}+\frac{b \tanh ^{-1}\left (\frac{b \left (\frac{a}{b}+\tan \left (\frac{1}{2} \left (c+d x^2\right )\right )\right )}{\sqrt{a^2-b^2}}\right )}{a \sqrt{a^2-b^2} d}\\ \end{align*}

Mathematica [A]  time = 0.174997, size = 66, normalized size = 1.05 \[ \frac{-\frac{2 b \tan ^{-1}\left (\frac{a+b \tan \left (\frac{1}{2} \left (c+d x^2\right )\right )}{\sqrt{b^2-a^2}}\right )}{d \sqrt{b^2-a^2}}+\frac{c}{d}+x^2}{2 a} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(a + b*Csc[c + d*x^2]),x]

[Out]

(c/d + x^2 - (2*b*ArcTan[(a + b*Tan[(c + d*x^2)/2])/Sqrt[-a^2 + b^2]])/(Sqrt[-a^2 + b^2]*d))/(2*a)

________________________________________________________________________________________

Maple [A]  time = 0.063, size = 73, normalized size = 1.2 \begin{align*}{\frac{1}{ad}\arctan \left ( \tan \left ({\frac{d{x}^{2}}{2}}+{\frac{c}{2}} \right ) \right ) }-{\frac{b}{ad}\arctan \left ({\frac{1}{2} \left ( 2\,b\tan \left ( 1/2\,d{x}^{2}+c/2 \right ) +2\,a \right ){\frac{1}{\sqrt{-{a}^{2}+{b}^{2}}}}} \right ){\frac{1}{\sqrt{-{a}^{2}+{b}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a+b*csc(d*x^2+c)),x)

[Out]

1/d/a*arctan(tan(1/2*d*x^2+1/2*c))-1/d*b/a/(-a^2+b^2)^(1/2)*arctan(1/2*(2*b*tan(1/2*d*x^2+1/2*c)+2*a)/(-a^2+b^
2)^(1/2))

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*csc(d*x^2+c)),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 0.52425, size = 560, normalized size = 8.89 \begin{align*} \left [\frac{2 \,{\left (a^{2} - b^{2}\right )} d x^{2} + \sqrt{a^{2} - b^{2}} b \log \left (\frac{{\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x^{2} + c\right )^{2} + 2 \, a b \sin \left (d x^{2} + c\right ) + a^{2} + b^{2} + 2 \,{\left (b \cos \left (d x^{2} + c\right ) \sin \left (d x^{2} + c\right ) + a \cos \left (d x^{2} + c\right )\right )} \sqrt{a^{2} - b^{2}}}{a^{2} \cos \left (d x^{2} + c\right )^{2} - 2 \, a b \sin \left (d x^{2} + c\right ) - a^{2} - b^{2}}\right )}{4 \,{\left (a^{3} - a b^{2}\right )} d}, \frac{{\left (a^{2} - b^{2}\right )} d x^{2} + \sqrt{-a^{2} + b^{2}} b \arctan \left (-\frac{\sqrt{-a^{2} + b^{2}}{\left (b \sin \left (d x^{2} + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \cos \left (d x^{2} + c\right )}\right )}{2 \,{\left (a^{3} - a b^{2}\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*csc(d*x^2+c)),x, algorithm="fricas")

[Out]

[1/4*(2*(a^2 - b^2)*d*x^2 + sqrt(a^2 - b^2)*b*log(((a^2 - 2*b^2)*cos(d*x^2 + c)^2 + 2*a*b*sin(d*x^2 + c) + a^2
 + b^2 + 2*(b*cos(d*x^2 + c)*sin(d*x^2 + c) + a*cos(d*x^2 + c))*sqrt(a^2 - b^2))/(a^2*cos(d*x^2 + c)^2 - 2*a*b
*sin(d*x^2 + c) - a^2 - b^2)))/((a^3 - a*b^2)*d), 1/2*((a^2 - b^2)*d*x^2 + sqrt(-a^2 + b^2)*b*arctan(-sqrt(-a^
2 + b^2)*(b*sin(d*x^2 + c) + a)/((a^2 - b^2)*cos(d*x^2 + c))))/((a^3 - a*b^2)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{a + b \csc{\left (c + d x^{2} \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*csc(d*x**2+c)),x)

[Out]

Integral(x/(a + b*csc(c + d*x**2)), x)

________________________________________________________________________________________

Giac [A]  time = 1.14166, size = 113, normalized size = 1.79 \begin{align*} -\frac{{\left (\pi \left \lfloor \frac{d x^{2} + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (\frac{1}{2} \, d x^{2} + \frac{1}{2} \, c\right ) + a}{\sqrt{-a^{2} + b^{2}}}\right )\right )} b}{\sqrt{-a^{2} + b^{2}} a d} + \frac{d x^{2} + c}{2 \, a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*csc(d*x^2+c)),x, algorithm="giac")

[Out]

-(pi*floor(1/2*(d*x^2 + c)/pi + 1/2)*sgn(b) + arctan((b*tan(1/2*d*x^2 + 1/2*c) + a)/sqrt(-a^2 + b^2)))*b/(sqrt
(-a^2 + b^2)*a*d) + 1/2*(d*x^2 + c)/(a*d)